FAQシステム / 分析ツール / AI(人工知能)
更新日:2018/11/15
レトリバ | ![]() |
![]() |
対象ユーザー | コンタクトセンターの対話データ活用を検討している企業 |
対象規模 | - | |
製品形態 | オンプレミス | |
価格情報 | 個別見積り | |
製品概要 | コンタクトセンターの対話データは膨大で構造化されていないため、属人的に処理されていることが多い。 AIを活用することで対話データを有効に活用し、コンタクトセンターの課題解決を支援する。 ・通話中の回答支援から通話後の後処理支援まで、ワンストップでの応対支援ソリューション「Talk Coordinator」 ・データ分析担当者のコール分析を支援するお客さまの声分析ソリューション「VoC Analyzer」 レトリバのAIソリューションの活用により、コンタクトセンターで働くヒトが生み出す価値を最大化できる。 |
|
コールセンター『AI化』成功に向け
技術・ノウハウをワンストップで提供
課題解決型AIソリューション
レトリバ
自然言語処理、機械学習、深層学習などのAI技術をコールセンター向けに特化して開発・提供するレトリバ。今回、音声認識エンジンを独自開発し、対話データのインプットから分析データのアウトプットまで、ワンストップで提供できるようになった。さらに、コールセンターに無理なくAIを導入していくためのロードマップを描き、ワンストップで支援。技術力のみならず、運用現場で培ったノウハウもあわせて、『AI化』成功に向けたオールラウンドのサポートを実践する。
株式会社レトリバ
代表取締役社長
河原 一哉 氏
「我々は人を支援するAI(人工知能)を作りたいと考えています。技術は、人の役に立って初めて価値が生まれます。“お客様の課題を解決する”ことにフォーカスし、お客様のニーズを踏まえた製品開発や技術開発を通じて、価値を生み出していきます」と、レトリバ代表取締役社長の河原一哉氏は強調する。
レトリバは、自然言語処理などの高い技術力で評価されるPreferred Infrastructure社から2016年にスピンアウトして誕生したAIベンチャーだ。経営理念を『お客様の課題を解決する』『最先端の技術に挑戦する』『人への投資を惜しまない』とし、「企業の課題やニーズに応じて最適な製品や技術を組み合わせて提供する」「製品に運用(ヒト)をあわせるのではなく、運用(ヒト)にあわせた製品や技術を提供する」「長く使ってもらえることを念頭に、常に現場の声に耳を傾けつつ、最先端技術の実用化に挑戦し続ける」ことをポリシーとして掲げている。
得意な技術分野は、自然言語処理、機械学習、深層学習の3つ。これら技術を組み合わせて、さまざまな日本語処理関連のAI技術を開発。さらにコールセンターに特化した機能(製品)群を揃えて、ソリューションとして提供している。
「設立当初、我々の自然言語処理技術が活かせ、AIが支援することで人が働きやすくなり、AIに関心を持っている領域はどこかを検討しました。その中で言語資源が大量に集まるコールセンターであれば、データ活用やオペレータ支援などでお手伝いでき、喜んでいただけるのではないかと考えました。以来、この領域に特化しています」(河原氏)
AI活用の精度向上を目的に 音声認識エンジンを独自開発
同社は「ワンストップ・ソリューション」を強く意識している。
具体的には、オペレータ支援、スーパーバイザー(SV)支援、データ分析の各機能を入り口から出口まで全方位的に提供。例えば、オペレータ支援では、オペレータと顧客の会話を音声認識でテキスト化、顧客の要望や質問を自動判定したうえで適切な回答候補を提示する。終話後にはコールリーズンを自動分類し、会話内容の重要なやり取りをホットボイス(VoC)として抽出する。一方、SV支援では顧客とオペレータの会話をモニタリングし、NGワードなどを検知した際はアラートを発報。SVは、どんな会話がなされていたかを自動要約されたテキストで確認し、適切なアドバイスをリモートで行える。データ分析では、正しく残されたコールリーズンやVoCを活用することで、より経営に活かせる知見を発見することができる(図1)。
図1 データの入口から出口までをワンストップで提供
「今回、音声認識エンジンも独自開発しています。複数のAIソリューションでデータをやり取りする場合、ベンダーが異なると調整が難しく精度が上がらないことがあります。自前の音声認識を活用することで、データのインプットからアウトプットまで含めて、すべて“ワンストップ”で提供できるようになりました。これでコールセンターのAI支援は、すべて当社にお任せいただけます」と、河原氏は自信を見せる。
これだけではない。ユーザー企業がコールセンターをAI化していく際に無理なく取り組めるよう、同社は“成功のロードマップ”を描く。
例えば、一般にAI導入では、最初に大量の学習データを用意する必要があり、これが大きな負担となっている。しかし同社の場合は、「導入検討の概念実証(PoC)の際には、必要最小限の学習データで実施し、そこで成果が出れば一部のオペレータにパイロット運用してもらいながらより業務にフィットするようチューニングします。このプロセスにおいて対話データやオペレータの行動履歴などの情報を取得します。実運用に至る段階で既に学習データが蓄積されているため、実運用に反映しつつ、次フェーズのPoCにスムーズに移行できます。ソリューション全体でロードマップを組んでおり、どんな順番で導入すれば全体が上手くいくか念頭に置いて設計しています」と、河原氏は説明する(図2)。
図2 レトリバが推奨するAI導入成功のロードマップ
ユーザー企業と二人三脚 現場視点でソリューション開発
同社のもう1つの大きな特徴は、現場に立脚した製品開発だ。ソリューションレビューで詳しく紹介する『Talk Coordinator』は好例。導入事例で取り上げるスカパー・カスタマーリレーションズとまさに二人三脚で開発したソリューションだ。
「製品開発には操作性を最も重視しています。そこで、お客様の現場に入り、オペレータやSVに直接ヒアリングしながら開発しています。とくにオペレータのUIは、使い勝手が良くないと対話に集中できずにストレスとなります。どうすれば使いやすいか、1つ1つ確認しながらお客様と一緒に検討して開発しました。お客様の課題を解決したい、現場のニーズを実現したいという当社理念を体現できました」と河原氏。
レトリバのAIソリューションは、難しい技術をいかに簡単に使えるか、ユーザー企業側で容易にチューニングできるかを意識しながら開発。“人を支援するAI”の実現に向けて、ユーザー企業との二人三脚を続けている。
お問い合わせ先 |
株式会社レトリバ |
トレンド・ガイド